(1) L. Zhang, Y. W. Pan, G. Huang, Z. Liang, L. L. Li, M. Zhang, and Z. G. Zhang, “A brain-wide genome-wide association study of candidate quantitative trait loci associated with structural and functional phenotypes of pain sensitivity,” Cerebral Cortex, vol. 33, no. 11, pp. 7297-7309, 2023.
(2) L. Zhang, G. Huang, Z. Liang, L. L. Li, and Z. G. Zhang, “Estimating scale-free dynamic effective connectivity networks from fMRI using group-wise spatial-temporal regularizations,” no. 485, pp. 22-35, Neurocomputing, 2022.
(3) L. Zhang, Z. N. Fu, W. W. Zhang, G. Huang, Z. Liang, L. L. Li, B. B. Biswal, V. D. Calhoun, and Z. G. Zhang, “Accessing dynamic functional connectivity using l0-regularized sparse-smooth inverse covariance estimation from fMRI,” Neurocomputing, no. 443, pp. 147-161, 2021.
(4) L. Zhang, H. C. Wu, C. H. Ho, and S. C. Chan, “A multi-Laplacian prior and augmented Lagrangian approach to the exploratory analysis of time-varying gene and transcriptional regulatory networks for gene microarray data,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, no. 6, pp. 1816-1829, 2019.
(5) S. C. Chan, H. C. Wu, C. H. Ho, and L. Zhang*, “An augmented Lagrangian approach for distributed robust estimation in large-scale systems,” IEEE Systems Journal, vol. 13, no. 3, pp. 2986-2997, 2019. (* Corresponding author)