En

刘忠

职位:助理教授,博士生导师

邮箱:liuzhong@szu.edu.cn

返回上一级

个人简介

刘忠,博士毕业于香港大学电机电子工程系,现任深圳大学医学部生物医学工程学院助理教授,博士生导师,深圳大学总医院(双聘)研究员,深圳市海外高层次人才。主要从事医学超声信号处理与智能诊断方法研究,课题方向涉及肝脏、甲状腺等相关疾病的超声智能诊断、预后预测等。部分成果在领域内顶级期刊IEEE Transactions on Image Processing, IEEE Journal of Biomedical and Health Informatics, European Radiology上发表。拥有中国发明专利授权4项,美国发明专利授权1项。主持国家自然科学基金项目2项,广东省自然科学基金项目1项,作为项目骨干参与国家科技部重大专项子课题等。

研究方向

医学超声信号处理、超声智能诊断方法

科研项目

1.国家自然科学基金面上项目,2025/01-2028/12,49.00万元,主持

2.国家自然科学基金青年项目,2020/01-2022/12,22.00万元,主持

3.国家科技部重大专项子课题,2024/01-2024/12,50.00万元,参与

4.广东省自然科学基金面上项目,2025/01-2027/12,10.00万元,主持

5.深圳市新引进高端人才科研启动项目,2023/01-2025/12,300.00万元,主持

代表性论文

1.Zhong Liu; Shing-Chow Chan*; Shuai Zhang; Zhiguo Zhang; Xin Chen*; Automatic Muscle Fiber Orientation Tracking in Ultrasound Images Using a New Adaptive Fading Bayesian Kalman Smoother, IEEE Transactions on Image Processing, 2019, 28(8): 3714-3727.

2.Zhong Liu#; Shaobin Zhong#; Qiang Liu; Chenxi Xie; Yunzhu Dai; Chuan Peng; Xin Chen*; Ruhai Zou*; Thyroid nodule recognition using a joint convolutional neural network with information fusion of ultrasound images and radiofrequency data, European Radiology, 2021, 31(7): 5001-5011.

3.Huiying Wen#; Wei Zheng#; Min Li; Qing Li; Qiang Liu; Jianhua Zhou*; Zhong Liu*; Xin Chen*; Multiparametric Quantitative US Examination of Liver Fibrosis: A Feature-engineering and Machine-learning Based Analysis, IEEE Journal of Biomedical and Health Informatics, 2022, 26(2): 715-726.

4.Zhong Liu#; Wei Li#; Ziqi Zhu; Huiying Wen; Ming-de Li; Chao Hou; Hui Shen; Bin Huang; Yudi Luo; Wei Wang*; Xin Chen*; A deep learning model with data integration of ultrasound contrast-enhanced micro-flow cines, B-mode images, and clinical parameters for diagnosing significant liver fibrosis in patients with chronic hepatitis B, European Radiology, 2023, 33(8): 5871-5881.

5.Zhong Liu#; Bin Huang#; Huiying Wen#; Zhicheng Lu; Qicai Huang; Meiqin Jiang; Changfeng Dong; Yingxia Liu; Xin Chen; Haoming Lin*; Automatic Diagnosis of Significant Liver Fibrosis From Ultrasound B-Mode Images Using a Handcrafted-Feature-Assisted Deep Convolutional Neural Network, IEEE Journal of Biomedical and Health Informatics, 2023, 27(10): 4938-4949.