lChang, A., Zeng, J.,Huang, R*., & Ni, D. (2024, October). EM-Net: Efficient Channel and Frequency Learning with Mamba for 3D Medical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI,(pp. 266-275). Cham: Springer Nature Switzerland.
lHuang, R., Ying, Q., Lin, Z., Zheng, Z., Tan, L., Tang, G., ... & Ni, D*. (2022). Extracting keyframes of breast ultrasound video using deep reinforcement learning. Medical Image Analysis, 80, 102490.
lHuang, R., Lin, M., Dou, H., Lin, Z., Ying, Q., Jia, X., ... & Ni, D*. (2022). Boundary-rendering network for breast lesion segmentation in ultrasound images. Medical image analysis, 80, 102478.
lHuang, R#., Lin, Z#., Dou, H., Wang, J., Miao, J., Zhou, G., ... & Ni, D*. (2021). AW3M: An auto-weighting and recovery framework for breast cancer diagnosis using multi-modal ultrasound. Medical image analysis, 72, 102137.
lManh, V. T., Zhou, J., Jia, X., Lin, Z., Xu, W., Mei, Z., ...Huang, R*.,& Ni, D*. (2022). Multi-attribute attention network for interpretable diagnosis of thyroid nodules in ultrasound images. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 69(9), 2611-2620.
lHuang, H., Dong, Y., Jia, X., Zhou, J., Ni, D., Cheng, J.*, &Huang, R*. (2022, September). Personalized diagnostic tool for thyroid cancer classification using multi-view ultrasound. In International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI,(pp. 665-674). Cham: Springer Nature Switzerland.