En

岳广辉

职位:副教授,博士生导师

邮箱:yueguanghui@szu.edu.cn

返回上一级

个人简介

岳广辉,男,副教授,特聘研究员,硕士生导师、博士生导师、博士后合作导师。2019年6月在天津大学获博士学位,2017-2019年于新加坡南洋理工大学计算机科学与工程学院Lin Weisi教授(IEEE/IET Fellow)课题组从事研究工作。2019年7月进入深圳大学从事教学科研工作。岳博士主要开展医学图像分析、计算机辅助诊断、图像/视频质量评价及优化、机器学习及其应用等领域的研究。截止目前,发表期刊/会议论文70余篇(含第一/通讯SCI论文40余篇),申请并授权国家发明专利20余项,部分成果获天津市科学技术进步奖一等奖。主持国家自然科学基金面上项目、青年项目、广东省基础与应用基础基金面上项目、深圳市优秀科技创新人才培养项目、深圳市医学研究专项资金(人才提升型项目)等纵向课题10余项。担任中国生物医学工程学会数字医疗及医疗信息化分会委员、中国自动化学会青年工作委员、广东省医学会人工智能分会学术委员、医学图像计算青年研讨会委员。担任多媒体信号处理会议(2023 IEEE MMSP)、国际图像处理会议(2024 IEEE ICIP)、中国控制会议(2024 CCC)等权威会议的专题主席。担任IEEE TIP/TMI/TMM/TCSVT/TNNLS/TII/TIE/TIM/TASE/TNSRE、Elsevier SP/DSP/JVCI、IET IP/EL等二十余个期刊的审稿人。主授课程为《机器学习与Python》、《高等数学(医)》、《人工智能的临床应用实践》及《医学图像处理与应用》,教学评测平均值在全校前20%。

研究方向

图像/视频质量评价及优化

医学图像分割

医学图像分类

科研项目(在研)

1. 国家自然科学基金面上项目, 2024/01-2027/12,主持

2. 广东省自然科学基金青年提升项目,2024/01-2026/12,主持

3. 广东省国际及港澳台人才交流专项(海外名师项目),2024/01-2024/12,主持

4. 深圳市医学研究专项资金(人才提升型-青年项目),2025/01-2027/12,主持

博士后、研究生、本科生招募

课题组聚焦于计算机辅助诊断、医学信息处理等前沿领域,以图像处理、深度学习技术为手段解决相关科学难题,实验室软硬件齐全,拥有多台高性能深度学习图形工作站及服务器,可满足深度学习相关的研究工作。课题组与国外多个名校的科研团队以及国内知名企业、医院构建了长期合作关系,全力支持学生开展研究工作,可推荐成果优秀、性格良好者交流学习。本人会积极与学生互动、给予一线科研指导,课题组氛围融洽,成员来自五湖四海,精诚协作、积极向上,已经连续三年获得研究生国家奖学金,部分硕士生毕业后入职华为、科大讯飞等企业从事研发工作、本科生前往中山大学继续深造。本课题组长期招募博士后、研究生(含博士生、硕士生)、本科生,重点招收拥有学术追求、计划从事算法研发和科研岗的学生(有继续读博深造计划的优先考虑),期待热爱人工智能及医学图像处理方向(最好掌握基本的编程、图像处理和机器学习知识),努力踏实勤奋的你加入实验室大家庭。感兴趣者请把简历发送至yueguanghui@szu.edu.cn

代表性论文

1. 图像/视频质量评价及优化

[1] Guanghui Yue, Lixin Zhang, et al., Subjective and Objective Quality Assessment of Colonoscopy Videos, IEEE Transactions on Medical Imaging, 2024, accepted, in press, DOI 10.1109/TMI.2024.3461737. (Top期刊, 中科院1区)

[2] Guanghui Yue, Chunping Hou, et al., Combining local and global measures for DIBR-synthesized image quality evaluation, IEEE Transactions on Image Processing, 2019, 28(4): 2075-2088. (Top期刊, 中科院1区)

[3] Guanghui Yue, Honglv Wu, et al., Perceptual Quality Assessment of Retouched Face Images, IEEE Transactions on Multimedia, 2024, 26: 5741 – 5752. (Top期刊, 中科院1区)

[4] Guanghui Yue, Di Cheng, et al., Semi-Supervised Authentically Distorted Image Quality Assessment with Consistency-Preserving Dual-Branch Convolutional Neural Network, IEEE Transactions on Multimedia, 2023, 25: 6499 - 6511. (Top期刊, 中科院1区)

[5] Guanghui Yue, Di Cheng, et al., Perceptual Quality Assessment of Enhanced Colonoscopy Images: A Benchmark Dataset and an Objective Method, IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(10): 5549 - 5561. (Top期刊, 中科院1区)

[6] Guanghui Yue, Shaoping Zhang, et al., Pyramid Network with Quality-Aware Contrastive Loss for Retinal Image Quality Assessment, IEEE Transactions on Medical Imaging, 2024, accepted, in press, DOI 10.1109/TMI.2024.3501405. (Top期刊, 中科院1区)

[7] Tianwei Zhou, Songbai Tan, Baoquan Zhao, and Guanghui Yue*, Multitask Deep Neural Network with Knowledge-Guided Attention for Blind Image Quality Assessment, IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (8): 7577 - 7588. (通讯,Top期刊, 中科院1区)

[8] Guanghui Yue, Jie Gao, et al., Deep Pyramid Network for Low-Light Endoscopic Image Enhancement, IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (5): 3834 - 3845. (Top期刊, 中科院1区)

[9] Yu Luo, Bijia You, Guanghui Yue*, et al., Pseudo-supervised Low-light Image Enhancement with Mutual Learning, IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(1): 85-96. (通讯,Top期刊, 中科院1区)

[10] Yu Luo, Xuanrong Chen, Jie Ling, Chao Huang, Wei Zhou, and Guanghui Yue*, Unsupervised Low-Light Image Enhancement with Self-Paced Learning, IEEE Transactions on Multimedia, 2024, accepted, in press. (Top期刊, 中科院1区)

2. 医学图像分割

[1] Guanghui Yue, Houlu Xiao, et al., Dual-Constraint Coarse-to-Fine Network for Camouflaged Object Detection, IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (5): 3286 - 3298. (Top期刊, 中科院1区)

[2] Guanghui Yue, Shangjie Wu, et al., Progressive Region-to-Boundary Exploration Network for Camouflaged Object Detection, IEEE Transactions on Multimedia, 2024, accepted, in press. (Top期刊, 中科院1区)

[3] Guanghui Yue, Yuanyan Li, et al., Dual-Domain Feature Interaction Network for Automatic Colorectal Polyp Segmentation, IEEE Transactions on Instrumentation and Measurement, 2024, accepted, in press, DOI: 10.1109/TIM.2024.3470962. (Top期刊,中科院2区)

[4] Guanghui Yue, Shangjie Wu, et al., Adaptive Context Aggregation Network with Prediction-aware Decoding for Multimodal Brain Tumor Segmentation, IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-11. (Top期刊,中科院2区)

[5] Guanghui Yue, Houlu Xiao, et al., Progressive Feature Enhancement Network for Automated Colorectal Polyp Segmentation, IEEE Transactions on Automation Science and Engineering, 2024, accepted, in press, DOI: 10.1109/TASE.2024.3430896. (Top期刊,中科院2区)

[6] Guanghui Yue, Siying Li, et al., Attention-Guided Pyramid Context Network for Polyp Segmentation in Colonoscopy Images, IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13. (Top期刊, 中科院2区)

3. 医学图像分类

[1] Guanghui Yue, Peishan Wei, et al., Toward Multicenter Skin Lesion Classification Using Deep Neural Network with Adaptively Weighted Balance Loss, IEEE Transactions on Medical Imaging, 2023, 42(1): 119-131. (Top期刊, 中科院1区)

[2] Guanghui Yue, Peishan Wei, et al., Automated Endoscopic Image Classification via Deep Neural Network with Class Imbalance Loss, IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11. (Top期刊,中科院2区)

[3] Guanghui Yue#, Peishan Wei#, et al., Specificity-aware Federated Learning with Dynamic Feature Fusion Network for Imbalanced Medical Image Classification, IEEE Journal of Biomedical and Health Informatics, 2023, accepted, in press, DOI: 10.1109/HI.2023. 3319516. (#共同一作,Top期刊, 中科院2区)

[4] Guanghui Yue, Yuan Li, et al., Attention-Driven Cascaded Network for Diabetic Retinopathy Grading from Fundus Images, Biomedical Signal Processing and Control, 2023, 80: 104370. (中科院2区)

[5] Guanghui Yue#, Jinqi Liao#, et al., Quality Evaluation of Induced Pluripotent Stem Cell Colonies by Fusing Multi-Source Features, Computer Methods and Programs in Biomedicine, 2021, 208: 106235. (#共同一作,中科院2区)